Aktuális sajtó tartalmak és illusztrációs fotók

87 találat
  • / 3
  • kép/oldal:
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RM
Hind Limb of Frog - Femur of the Frog, ft, proximo.! ^ d, distnl orticuluting surfaces., s, shaft. B, Tibio-fibula, seen from below, p, proximal ; d, distal articulating surfaces ; t, tibial half of the bone separated by a groove from f the fibular half. C, The right ankle and foot of the Frog, seen from below. This figure is drawn to a smaller scale than A and B. a, astragalus ; c, calcaneum ; / — V, the five principal digits ; X, the minute accessory digit. from the book ' An introduction to the study of the comparative anatomy of animals ' by Bourne, Gilbert C. (Gilbert Charles), 1861-1933-stock-foto
RF
. Foot anatomy illustration, whit annotations-stock-foto
RF
Foot anatomy illustration, with annotations.-stock-foto
RF
Anatomical Illustration of Biceps Femoris Muscle.3d rendering-stock-foto
RF
Medical Accurate Illustration of Short Head of Biceps Femoris-stock-foto
RF
Medical Illustration of Tibialis Anterior-stock-foto
RF
Medical Illustration of Soleus Muscle-stock-foto
RF
Medical Illustration of Popliteus Muscle-stock-foto
RF
Medical Illustration of Plantaris Muscle-stock-foto
RF
3d rendered medically accurate illustration Common Fibular Nerve-stock-foto
RF
Ankle joint anatomy with muscles, tendons.-stock-foto
RF
Ankle joint anatomy with muscles, tendons.-stock-foto
RF
Right knee joint in external view with ligaments.-stock-foto
RF
Right knee joint in external view with ligaments.-stock-foto
RF
fracture tibia. small tibial fracture.-stock-foto