Aktuális sajtó tartalmak és illusztrációs fotók

672 találat
  • / 17
  • kép/oldal:
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Nerve conduction study Electrophysiological studies for both LL lower limbs motor and sensory nerves shows, no evidence of proximal or distal entrapme-stock-foto
RF
Aneurysm under magnifying glass. Thorough analysis and inspection of aneurysm. Taking a closer look at aneurysm. Examination of the concept of aneurys-stock-foto
RF
Aneurysm as a complex subject, related to important topics spreading around as a word cloud.-stock-foto
RF
Aneurysm as a complex subject, related to important topics spreading around as a word cloud.-stock-foto
RF
Medical illustration of baker cyst, with annotation.-stock-foto
RF
Illustration of leg pain, and more particularly venous insufficiency (here, at the level of the popliteal vein and the external saphenous vein).-stock-foto
RF
Aneurysm being a complex subject, related to other important topics.-stock-foto
RF
Baker's cyst: fluid-filled swelling behind the knee due to underlying knee issues, causing pain, stiffness, may require treatment.-stock-foto
RF
Baker's cyst: fluid-filled swelling behind the knee due to underlying knee issues, causing pain, stiffness, may require treatment.-stock-foto
RF
Baker's cyst: fluid-filled swelling behind the knee due to underlying knee issues, causing pain, stiffness, may require treatment.-stock-foto
RF
Popliteal fossa. Back view of male's knees on plain background. Graphic resource of anatomy and structure of the human body.-stock-foto
RF
Popliteal cyst-stock-foto
RF
Anatomical Illustration of Biceps Femoris Muscle.3d rendering-stock-foto
RF
Superficial and Deep Veins of Lower Limb.3d rendering-stock-foto
RF
Sciatic Nerve on Black Background.3d rendering-stock-foto
RF
Boundaries of Popliteal Fossa-stock-foto